Statistical binary pattern and post-competitive representation for pattern recognition

نویسندگان

  • Mohamed Anouar Borgi
  • Phuong Nguyen
  • Demetrio Labate
  • Chokri Ben Amar
چکیده

During the last decade, sparse representations have been successfully applied to design highperforming classification algorithms such as the classical sparse representation based classification (SRC) algorithm. More recently, collaborative representation based classification (CRC) has emerged as a very powerful approach, especially for face recognition. CRC takes advantage of sparse representation based classification through the notion of collaborative representation, relying on the observation that the collaborative property is more crucial for classification than the l1-norm sparsity constraint on coding coefficients used in SRC. This paper follows the same general philosophy of CRC and its main novelty is the application of a virtual collaborative projection (VCP) routine designed to train images of every class against the other classes to improve fidelity before the projection of the query image. We combine this routine with a method of local feature extraction based on high-order statistical moments to further improve the representation. We demonstrate using extensive experiments of face recognition and classification that our approach performs very competitively with respect to state-of-the-art classification methods. For instance, using the AR face dataset, our method reaches 100% of accuracy for dimensionality 300.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local gradient pattern - A novel feature representation for facial expression recognition

Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...

متن کامل

Second-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain

Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction met...

متن کامل

Facial Expression Recognition Based on Structural Changes in Facial Skin

Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...

متن کامل

Modelling of Eyeball with Pan/Tilt Mechanism and Intelligent Face Recognition Using Local Binary Pattern Operator

This paper describes the vision system for a humanoid robot, which includes the mechanism that controls eyeball orientation and blinking process. Along with the mechanism designed, the orientation of the camera, integrated with controlling servomotors. This vision system is a bio-mimic, which is  designed to match the size of human eye. This prototype runs face recognition and identifies, match...

متن کامل

Sign language recognition using competitive learning in the HAVNET neural network

An optical modeless Sign Language Recognition (SLR) system is presented. The system uses the HAusdorf-Voronoi NETwork (HAVNET), an artificial neural network designed for two-dimensional binary pattern recognition. It uses an adaptation of the Hausdorff distance to determine the similarity between an input pattern and a learned representation. A detailed review of the architecture, the learning ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016